
Homework 1
Due Monday, Jan 29, 2024 at 8pm ET

The learning objectives of this homework are to:

• Review recursion and gain more practice using it

• Gain experience writing code in Scheme

Use the following commands to download and unpack the distribution code:

$ wget https://eecs390.github.io/homework/hw1/starter-files.tar.gz
$ tar xzf starter-files.tar.gz

You may work alone or with a partner. Please see the syllabus for partnership rules. As a reminder, you may not
share any part of your solution outside of your partnership. This includes code, test cases, and written solutions.

The Python distribution code for this assignment, as well as the examples below, uses doctests to document exam-
ples and to provide a minimal set of test cases. You can run the tests from the command line as follows:

$ python3 -m doctest -v hw1_python.py

For the Scheme code in this assignment, you must write it in R5RS-compliant Scheme. The officially supported
interpreter for this course is Racket1. Make sure you choose to run R5RS Scheme. If you use the DrRacket interface,
select Language -> Choose Language -> Other Languages -> R5RS from the menu. You may need to click on Run
before the interface will show that R5RS is chosen.

You may also use the plt-r5rs command-line interpreter included in the Racket distribution, which is also
available on CAEN after running the following command:

module load racket

To run with plt-r5rs on your own machine, you may need to add the bin directory under your Racket instal-
lation to your path2 so that the plt-r5rs executable can be located.

You can run the provided test cases with:

$ plt-r5rs hw1_scheme_tests.scm

The autograder for this assignment will also use plt-r5rs.
The following restrictions apply to the Scheme questions on this assignment:

• You must write your code in standard R5RS Scheme.

• You may only use define at global scope.

• You may not use any procedures with side effects.

• You may not use do, for-each, or syntax-rules.
1On MacOS, you can install Racket with Homebrew (brew install --cask racket).
2Instructions: Windows; MacOS (e.g. export PATH="/Applications/Racket v7.4/bin:$PATH" for a Racket 7.4 installation on

MacOS; this is unnecessary if you installed Racket with Homebrew)

1

https://pymotw.com/2/doctest/
http://www.schemers.org/Documents/Standards/R5RS/
https://download.racket-lang.org/
http://docs.racket-lang.org/r5rs/running.html
https://www.computerhope.com/issues/ch000549.htm
http://hathaway.cc/post/69201163472/how-to-edit-your-path-environment-variables-on-mac

Exercises
1. Recursion. Write a recursive function in Python that divides an input sequence into a tuple of smaller sequences

that each contain 4 or 5 elements from the original sequence. For example, an input sequence of 14 elements
should be divided into sequences of 4, 5, and 5 elements. Use as few 5-element sequences as necessary in the
result, and all 5-element sequences should be at the end. Finally, preserve the relative ordering of elements from
the original sequence, and subsequences should be of the same type as the input sequence.

Hint: You may assume that the input sequence has length at least 12. Think carefully about how many base
cases you need, and what they should be. Use slicing to form subsequences, which preserves the type.

def group(seq):
"""Divide a sequence of >= 12 elements into groups of 4 or 5.

Groups of 5 will be at the end. Returns a tuple of sequences,
each corresponding to a group, with type matching that of the
input sequence.

>>> group(range(14))
(range(0, 4), range(4, 9), range(9, 14))
>>> group(tuple(range(17)))
((0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11), (12, 13, 14, 15, 16))
"""
add your solution below

2. Scheme and recursion. Write a recursive function interleave that takes two lists and returns a new list with
their elements interleaved. In other words, the resulting list should have the first element of the first list, the first
of the second, the second element of the first list, the second of the second, and so on. If the two lists are not the
same size, then the leftover elements of the longer list should still appear at the end.

> (interleave ’(1 3) ’(2 4 6 8))
(1 2 3 4 6 8)
> (interleave ’(2 4 6 8) ’(1 3))
(2 1 4 3 6 8)
> (interleave ’(1 3) ’(1 3))
(1 1 3 3)

3. List manipulation. Write a function add-to-all that takes an item and a list of lists and returns a new list of
lists, where each nested list is the result of prepending the first argument to the corresponding nested list in the
second input argument.

> (add-to-all 1 ’(() (2) (3 4)))
((1) (1 2) (1 3 4))
> (add-to-all ’(foo bar) ’((baz) ()))
(((foo bar) baz) ((foo bar)))
> (add-to-all ’qux ’(((foo bar) baz) ((foo bar))))
((qux (foo bar) baz) (qux (foo bar)))

4. Merge sort. In this question, we will implement merge sort on lists of integers.

a) Implement a merge function that given two sorted lists, returns a new sorted list that is the merge of the
given lists.

> (merge ’(1 3 8) ’(2 4 5))
(1 2 3 4 5 8)

b) Now implement a split function that given a list, returns a pair of lists consisting of the first and second
half of the original list. The two halves should either be the exact same size, or the first half should be
exactly one item larger than the second.

> (split ’(4 8 5 3 1 2))
((4 8 5) 3 1 2)
> (split ’(4 8 5))
((4 8) 5)

2

You may find the built-in length procedure helpful. You may also find it helpful to write a helper
function.

c) Finally implement a mergesort function that given a list, returns its sorted counterpart.

> (mergesort ’(4 8 5 3 1 2 6 9 7))
(1 2 3 4 5 6 7 8 9)

Use split and merge in your solution.

Submission
Place your solutions to question 1 in the provided hw1_python.py file, and the solution to the remaining questions
in hw1_scheme.scm. Submit hw1_python.py and hw1_scheme.scm to the autograder before the deadline.
Be sure to register your partnership on the autograder if you are working with a partner.

3

	Exercises
	Submission

