
The uC24 Language Specification

Contents

1 The uC24 Language Specification 2

2 Lexical Structure 2
2.1 Whitespace . 3
2.2 Comments . 3
2.3 Keywords . 4
2.4 Identifiers . 4
2.5 Literals . 5

Integer Literals . 5
Floating-Point Literals . 5
String Literals . 6
Boolean Literals . 7
Null Literal . 7

2.6 Operators . 7
2.7 Delimiters . 7

3 Program Structure 7
3.1 Type Declarations . 8
3.2 Function Declarations . 8

4 Types 9
4.1 Primitive Types . 9
4.2 User-Defined Types . 10
4.3 Arrays . 10
4.4 Type Compatibility . 10

5 Functions 10
5.1 Built-in Functions . 11
5.2 User-Defined Functions . 12

6 Statements 12
6.1 Blocks . 12
6.2 Variable Definitions . 13
6.3 Conditionals . 13
6.4 Loops . 13
6.5 Return Statements . 14
6.6 Expression Statements . 15

7 Expressions 15
7.1 Simple Expressions . 15
7.2 Function Calls . 16
7.3 Allocation Expressions . 16
7.4 Field Access . 17
7.5 Array Indexing . 17

1

7.6 Unary Operations . 17
7.7 Binary Operations . 18

Arithmetic Operations . 18
Logical Operations . 19
Comparisons . 19
Equality Tests . 19
Assignment . 20
Array Operations . 20

7.8 Associativity and Precedence . 20

8 Memory Management 21
8.1 Default Initialization . 21

9 Revision History 21

https://eecs390.github.io/uc-language/

1 The uC24 Language Specification

This document was generated on 2024-01-27.

2 Lexical Structure

Excepting comments and string literals, programs must be written in the subset of ASCII consisting of the following
92 characters:

• the 62 alphanumeric characters: 0-9, a-z, A-Z

• the 24 symbols: + - * / % | & ! < > = # () [] { } , . ; " \ _

• the 6 whitespace characters: space, horizontal tab, carriage return, new line, vertical tab, form feed

A source program may consist of whitespace, comments, and tokens.

ProgramText:
TextElements

TextElements:
TextElement
TextElememts TextElement

TextElement:
Whitespace
Comment
Token

Tokens consist of keywords, identifiers, literals, operators, and delimiters.

Token:
Keyword
Identifier
Literal

(continues on next page)

2

(continued from previous page)

Operator
Delimiter

2.1 Whitespace

Tokens may be separated by any of the 6 whitespace characters.

Whitespace:
space
horizontal tab
carriage return
vertical tab
form feed
NewLine

NewLine: the new-line character

2.2 Comments

There are two kinds of comments, a delimited comment and an end-of-line comment.

Comment:
DelimitedComment
EndOfLineComment

DelimitedComment:
/ * CommentChars * /
/ * * /

CommentChars:
*
* CommentCharsNoSlash
CommentCharNoStar CommentChars
CommentCharNoStar

CommentCharNoStar: any ASCII character except *

CommentCharsNoSlash:
CommentCharNoSlash CommentChars
CommentCharNoSlash

CommentCharNoSlash: any ASCII character except /

EndOfLineComment:
/ / CharactersNoNewLine NewLine
/ / NewLine

CharactersNoNewLine:
CharacterNoNewLine
CharactersNoNewLine CharacterNoNewLine

(continues on next page)

3

(continued from previous page)

CharacterNoNewLine: any ASCII character except the new line

2.3 Keywords

The following character sequences are reserved keywords and may not be used as identifiers.

Keyword: one of
if else while for struct break continue return new

2.4 Identifiers

Identifiers consist of a sequence of characters begininning with a lower-case letter (a-z) or upper-case letter (A-Z). The
remaining characters may consist of underscores, lower-case letters, upper-case letters, and digits (0-9).

Identifier: except Keyword, BooleanLiteral, and NullLiteral
IdentifierStartCharacter
IdentifierStartCharacter IdentifierCharacters

IdentifierStartCharacter:
LowerCaseLetter
UpperCaseLetter

IdentifierCharacters:
IdentifierCharacter
IdentifierCharacters IdentifierCharacter

IdentifierCharacter:
IdentifierStartCharacter
_
Digit

LowerCaseLetter: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z

UpperCaseLetter: one of
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Digit: one of
0 1 2 3 4 5 6 7 8 9

4

2.5 Literals

Literals include integer, floating-point, string, boolean literals, and the null literal.

Literal:
IntegerLiteral
FloatingLiteral
StringLiteral
BooleanLiteral
NullLiteral

Integer Literals

Integer literals must be expressed in decimal format. They consist of a sequence of one or more decimal digits, followed
by an optional lower- or upper-case L. Integer literals with an l or L suffix are of type long, while those without are of
type int.

IntegerLiteral:
Digits IntegerSuffix
Digits

Digits:
Digit
Digits Digit

IntegerSuffix: one of
l L

It is a compile-time error if an integer literal represents a value that is too large for its type. For an int, the largest valid
literal is 2147483647 (231 − 1), and for a long, the largest valid literal is 9223372036854775807L (263 − 1).

Integer literals are always nonnegative: a sequence such as -42 consists of the unary - operator applied to the subse-
quent literal value. The minimal int value can be expressed by (-2147483647-1), and the minimal long value by
(-9223372036854775807L-1).

Floating-Point Literals

A floating-point literal consists of a digit sequence consisting of a significand and optional exponent. The significand
is a sequence of digits containing a single period (.). If an exponent is provided, the period (.) may be elided from
the significand. The exponent consists of the character e followed by an optional sign and a non-empty digit sequence.
Floating-point literals are of type double.

FloatingLiteral:
SignificandWithPeriod
SignificandWithPeriod Exponent
Digits Exponent

SignificandWithPeriod:
Digits .
. Digits
Digits . Digits

(continues on next page)

5

(continued from previous page)

Exponent:
e Sign Digits
e Digits

Sign: one of
+ -

String Literals

A string literal consists of a sequence of characters surrounded by double quotes ("). Any ASCII character except
for the new-line character may appear in a string literal. The backslash (\) and double-quote (") characters may only
appear as part of an escape sequence. A string literal has type string.

StringLiteral:
" StringCharacters "
" "

StringCharacters:
StringCharacter
StringCharacters StringCharacter

StringCharacter:
UnescapedCharacter
EscapedCharacter

UnescapedCharacter: any ASCII character except \, ", or new line

EscapedCharacter: any of the escape sequences below

The following escape sequences represent special characters:

Escape Sequence Character
\" double quote
\\ backslash
\a audible bell
\b backspace
\n new line
\t horizontal tab
\f form feed
\r carriage return

6

Boolean Literals

The character sequences true and false represent boolean literals, which have type boolean.

BooleanLiteral: one of
true false

Null Literal

The character sequence null represents a null literal, which has the null type.

NullLiteral:
null

2.6 Operators

The following 20 characters and character sequences represent operators.

Operator: one of
+ - * / % || && ! < > <= >= == != = ++ -- # << >>

2.7 Delimiters

The following characters are delimiters.

Delimiter: one of
() [] { } , . ;

3 Program Structure

A uC program consists of a single source file, conventionally with extension .uc. A program consists of a sequence of
type and function declarations.

Program:
Declarations

Declarations:
Declarations Declaration
Empty

Declaration:
FunctionDeclaration
TypeDeclaration

Empty: empty

A program must have exactly one function with the following declaration:

7

void main(string[] args) {
...

}

The main() function is the entry point of a uC program. The args array contains the command-line arguments
provided to the program.

3.1 Type Declarations

A type declaration consists of the struct keyword, followed by the name of the type and an open curly brace, followed
by a list of field declarations, terminated by a closing curly brace and semicolon.

TypeDeclaration:
struct Identifier { FieldDeclarations } ;

FieldDeclarations:
FieldDeclarations FieldDeclaration
Empty

FieldDeclaration:
Type Identifier ;

As an example, the following declares a type containing an integer and a floating-point field:

struct foo {
int x;
double y;

};

It is a compile-time error for multiple fields to be given the same name. It is a compile-time error for a type declaration
to declare a type with the same name as an existing built-in or user-defined type. It is not an error for a field to have
the same name as a built-in or user-defined type or function.

A type can be used anywhere in the source program, including prior to its declaration.

3.2 Function Declarations

A function declaration consists of a return type, followed by the name of the function, a parameter list, and a body
consisting of a block of statements.

FunctionDeclaration:
Type Identifier (ParametersOpt) Block

ParametersOpt:
Parameters
Empty

Parameters:
Parameter
Parameters , Parameter

(continues on next page)

8

(continued from previous page)

Parameter:
Type Identifier

As an example, the following declares a function that takes an integer argument and returns a string:

string bar(int i) {
...

}

A function can be used anywhere in the source program, including prior to its declaration.

It is a compile-time error for a function declaration to declare a function with the same name as an existing built-in or
user-defined function. It is not an error for a function to have the same name as a built-in or user-defined type.

The scope of a function parameter is the entire body of the function.

It is a compile-time error for two parameters of a function to have the same name. It is not an error for a parameter to
have the same name as a built-in or user-defined type or function.

4 Types

The types in a uC program consist of primitive types, user-defined types, and array types.

Type:
Identifier
ArrayType

4.1 Primitive Types

The following primitive types are available to uC programs:

• int: a 32-bit integer, representing values in the range [−231, 231 − 1].

• long: a 64-bit integer, representing values in the range [−263, 263 − 1].

• double: an IEEE754-compliant, double-precision floating-point number.

• boolean: a truth value, either true or false.

• string: a sequence of zero or more characters.

• void: denotes the return type of a function that does not return a value. It is a compile-time error to use void
as a type in any other context.

• null: the type of the null literal. This type is syntactically prevented from being used anywhere other than the
null literal.

Primitive types have value semantics, meaning that they are stored directly in variables, parameters, fields, and array
elements. It is a compile-time error to use the new keyword with a primitive type.

9

4.2 User-Defined Types

User-defined types are those introduced by Type Declarations. Such types have reference semantics, meaning that a
variable, parameter, field, or array element of user-defined type is either an indirect reference (i.e. a pointer) to an
object of the given type or contains the special null reference.

4.3 Arrays

An array is a homogeneous, sequential collection of values. An array type is denoted by an element type followed by
an empty pair of square brackets.

ArrayType:
Type []

The element type may be any primitive, user-defined, or array type, excluding the void and null types.

Arrays have reference semantics, so a variable, parameter, field, or array element of array type holds either an indirect
reference to an array object or the special null reference.

An array has a length field, which contains the number of elements in the array.

4.4 Type Compatibility

The following implicit conversions are allowed:

• conversion of a value of type int to long or double type

• conversion of a value of type long to type double

• conversion of the null literal to any reference type (user-defined and array types)

Except for the conversions above, the type of a value must exactly match the type expected by the context in which the
value is used. Specifically:

• the type of a return value must match or be implicitly covertible to the function’s return type

• the type of an argument passed to a function call must match or be implicitly convertible to the type of the
corresponding function parameter

• the type of the value on the right-hand side of an assignment must match or be implicitly convertible to the type
of the object on the left-hand side

5 Functions

The functions in a uC program consist of built-in functions, which are available to all uC programs, and user-defined
functions.

10

5.1 Built-in Functions

The following functions convert between numeric types:

• long int_to_long(int)

• double int_to_double(int)

• int long_to_int(long)

• double long_to_double(long)

• int double_to_int(double)

• long double_to_long(double)

The following functions convert between strings and other primitive types:

• string int_to_string(int)

• string long_to_string(long)

• string double_to_string(double)

• string boolean_to_string(boolean)

• int string_to_int(string)

• long string_to_long(string)

• double string_to_double(string)

• boolean string_to_boolean(string)

It is a runtime error to pass a string that does not consist of a valid representation of the input type to the functions
that convert to string.

The following functions are defined on strings:

• int length(string): returns the length of the input string.

• string substr(string, int, int): produces a string that contains a subsequence of the input string.
The second argument is the start position, which must be in the range [0,length(string)-1]. The third
argument is the length of the subsequence, which must be non-negative. The length is truncated if the input
string contains insufficient characters.

• int ordinal(string): returns the ASCII value of the given single-character string. If the given string does
not consist of exactly one character, -1 is returned.

• string character(int): returns a string containing the character with the given ASCII value. If the given
argument is not in the range [1, 127], an empty string is returned.

The following numerical functions are defined:

• double pow(double, double): computes the first argument raised to the power of the second.

• double sqrt(double): computes the square root of the argument. The argument must be non-negative.

• double ceil(double): computes a floating-point representation of the ceiling of the argument.

• double floor(double): computes a floating-point representation of the floor of the argument.

The following printing functions are defined:

• void print(string): prints the given string to standard output, without a trailing new-line character.

• void println(string): prints the given string to standard output, with a trailing new-line character.

The following input functions are defined:

11

• string peekchar(): returns the next character that is in standard input, without removing it from the stream.
Returns an empty string if the stream is at end-of-file.

• string readchar(): returns the next character that is in standard input, removing it from the stream. Returns
an empty string if the stream is at end-of-file.

• string readline(): returns the line that is in standard input, removing it from the stream. The trailing new-
line character, if there is one, is included in the resulting string. Returns an empty string if end-of-file is reached
before any characters are read.

5.2 User-Defined Functions

User-defined functions are introduced by Function Declarations. A user-defined function consists of a return type, a
name, parameters, and a block of statements constituting the body. Calling a user-defined function binds the values
of the argument expressions to the parameter names in a fresh environment and executes the body in the subsequent
environment. Functions are lexically scoped and do not have access to the caller’s environment.

It is a compile-time error (no diagnostic required) for control to reach the end of a function whose return type is not
void. A function that returns void may only have bare return statements without an expression. A function that
returns any other type must have return statements with an expression whose type matches or is implicitly convertible
to the return type.

6 Statements

Statements in uC include variable definitions, conditionals, loops, control statements (break, continue, and return), and
expression statements.

Statement:
VariableDefinitionStatement
IfStatement
WhileStatement
ForStatement
BreakStatement
ContinueStatement
ReturnStatement
ExpressionStatement

6.1 Blocks

A block is not itself a statement, but it consists of a sequence of zero or more statements, enclosed by curly braces.
A block executes each of its statements in order. It terminates normally when control reaches the end of its last state-
ment. A control statment within a block may cause abrupt termination, where execution of the block is immediately
terminated.

Block:
{ Statements }

Statements:
Statements Statement
Empty

12

6.2 Variable Definitions

A variable definition consists of a type, followed by an identifier, an equals sign, and an initialization expression.

VariableDefinitionStatement:
VariableDefinition ;

VariableDefinition:
Type Identifier = Expression

The scope of a variable introduced by a variable-definition statement encompasses the variable’s initialization as well
as all subsequent statements in the block in which the variable definition is located. It is a compile-time error if an
existing parameter or variable of the same name is in scope when a variable is defined (i.e. if the variable shadows an
existing parameter or variable). It is a compile-time error for the initialization expression to refer to the variable being
defined.

A variable definition binds the given identifier in the current environment to the result of evaluating the initialization
expression. The type of the initialization expression must match or be implicitly convertible to the type specified in the
variable definition.

6.3 Conditionals

A conditional consists of the keyword if, a parenthesized expression, a block, and optionally, an else keyword fol-
lowed by a another block.

IfStatement:
if (Expression) Block
if (Expression) Block else Block
if (Expression) Block else IfStatement

The expression constitutes the test of the conditional, and its type must be boolean. If the expression evaluates to true,
the block immediately following the test is executed. Otherwise, the block or conditional following the else keyword
is executed, if present.

6.4 Loops

A while loop consists of the while keyword, a parenthesized expression, and a block.

WhileStatement:
while (Expression) Block

The expression constitutes the test of the while loop, and its type must be boolean. If the test expression evaluates
to true, the block is executed, after which control normally returns to the beginning of the loop. If the test expression
evaluates to false, execution proceeds past the loop.

A for loop consists of the for keyword, followed by a parenthesized list consisting of an initialization, a test expression,
and an update expression, separated by semicolons, followed by a block. Any of the expressions in the parenthesized
list may be omitted, but the separating semicolons must still be present.

ForStatement:
for (ForInitialization ; ExpressionOpt ; ExpressionOpt) Block

ForInitialization:
(continues on next page)

13

(continued from previous page)

VariableDefinition
ExpressionOpt

ExpressionOpt:
Expression
Empty

The initialization can be a variable definition or an arbitrary expression. If it is a variable definition, the scope of the
variable consists of the entirety of the for loop, including the variable’s own initialization expression. As in variable-
definition statements, it is a compile-time error if an existing parameter or variable of the same name is in scope when
a variable is defined in a for initialization, or for the initialization expression of the variable to refer to the variable
being defined.

If a for loop contains an initialization, the initialization is performed upon first reaching the loop.

The middle expression constitutes the test, and its type must be boolean if it is present. If the test expression is omitted
or evaluates to true, the block is executed.

The last expression is the loop update. If present, it is evaluated after each normal execution of the block. Following
normal termination of the block and evaluation of the update, control returns to the beginning of the for loop, prior to
evaluating the test expression. If the test expression is present and evaluates to false, execution proceeds past the loop.

If execution reaches a return statement within a while or for loop, the loop is abruptly terminated.

Execution of a while or for loop can also be controlled with a break or continue statement, which can only appear within
the body of a loop.

BreakStatement:
break ;

ContinueStatement:
continue ;

A break statement causes execution of the loop that immediately contains it to abruptly terminate. A continue statement
causes execution of the loop that immediately contains it to abruptly return to the beginning of the loop, prior to
evaluating the test expression. In a for loop, the update expression, if present, is evaluated before execution is returned
to the test expression.

6.5 Return Statements

A return statement consists of the return keyword, followed by an optional expression, followed by a semicolon.

ReturnStatement:
return Expression ;
return ;

If execution reaches a return statement, the current function is abruptly terminated. If the return type of the current
function is void, then a return statement must not be given an expression. If the return type is any other type, then a
return statement must be given an expression whose type matches or is implicitly convertible to the return type.

14

6.6 Expression Statements

An expression statement consists of an expression followed by a semicolon.

ExpressionStatement:
Expression ;

An expression statement evaluates the given expression and discards its value.

7 Expressions

An expression is evaluated to produce a value. All expressions in a uC program have a type, and the type must be valid
for the context in which the expression is used.

Expression:
ParenthesizedExpression
Literal
NameExpression
CallExpression
NewExpression
FieldAccessExpression
ArrayIndexExpression
UnaryPrefixOperation
BinaryOperation

Any expression can be parenthesized, which can be used to override the default associativity and precedence of a
sequence of operations.

ParenthesizedExpression:
(Expression)

7.1 Simple Expressions

A literal is an expression that evaluates to the value represented by the literal.

Literal:
IntegerLiteral
FloatingLiteral
StringLiteral
BooleanLiteral
NullLiteral

The type of an integer literal is long if it ends with the l or L suffix, otherwise it is int. The type of a floating-point
literal is double, a string literal is string, a boolean literal is boolean, and the null literal is null.

An identifier is an expression, and it must name a variable or parameter in the local scope. It is an l-value and can be
used in an l-value context. When used in a context that expects a value, it evaluates to the value to which the variable
or parameter is bound.

NameExpression:
Identifier

The type of an identifier expression is the type of the variable or parameter it names.

15

7.2 Function Calls

A function call consists of an identifier followed by a parenthesized list of arguments, separated by commas.

CallExpression:
Identifier (ArgumentsOpt)

ArgumentsOpt:
Arguments
Empty

Arguments:
Expression
Arguments , Expression

The identifier must name a built-in or user-defined function. The number of arguments must match the number of
function parameters, and each argument type must match or be implicitly convertible to the corresponding parameter
type.

A function call evaluates the arguments in an indeterminate order, binds the argument values to the function parameters
in a fresh environment, and executes the body of the function in the given environment.

The type of a function call is the return type of the invoked function.

7.3 Allocation Expressions

An allocation expression allocates space for an object of user-defined type or an array and initializes the object or array.
It consists of the keyword new, followed by a type, followed by a list of zero or more argument expressions enclosed
by parentheses or curly braces and separated by commas.

NewExpression:
new Type (ArgumentsOpt)
new Type { ArgumentsOpt }

The type must name a user-defined or array type.

If the given type is user-defined, the allocation constructs a new object of that type. The arguments may be empty, in
which case the fields of the newly created object undergo Default Initialization. Otherwise, the number of arguments
must match the number of fields in the given type, and the argument types must match or be implicitly convertible to
the corresponding field types. The fields of the newly created object are then initialized with the argument values. The
allocation expression evaluates to a reference to the new object, and the type of the expression is that named by the
given type.

If the given type is an array type, the allocation creates an array of the given type. Any number of argument expressions
may be provided. The type of each argument must match or be implicitly convertible to the element type of the array.
The array is initialized with the argument values, and it has initial length equal to the number of arguments. The
allocation expression evaluates to a reference to the new array, and the type of the expression is the given array type.

The order of evaluation of the arguments of an allocation expression is indeterminate.

16

7.4 Field Access

A field-access expression consists of an expression denoting the receiver, followed by a period, followed by an identifier.

FieldAccessExpression:
Expression . Identifier

The receiver expression preceding the period must be of user-defined or array type. It is a runtime error if the receiver
expression evaluates to a null reference.

If the receiver is of array type, only the identifier length is valid, in which case the field-access expression has type
int and evaluates to the length of the array produced by the receiver expression. The field-access expression is not an
l-value in this case.

If the receiver is of user-defined type, the identifier must name a field defined by the type. The field-access expression
has type associated with the given field. It evaluates to the l-value associated with the field in the object produced by
the receiver expression. If used in a context that requires a value, then it evaluates to the value bound to that field.

7.5 Array Indexing

An array-indexing expression consists of an expression denoting the receiver, following by an open square bracket, an
index expression, and a close square bracket.

ArrayIndexExpression:
Expression [Expression]

The receiver expression preceding the square brackets must be of array type. It is a runtime error if the receiver evaluates
to a null reference.

The index expression enclosed by the square brackets must be of type int. It is a runtime error if it evaluates to a value
that is negative or greater than or equal to the length of the receiver array.

The array-indexing expression has type corresponding to the element type of the receiver, and it evaluates to the l-value
associated with the array element at the given index. If used in a context that requires a value, then it evaluates to the
value of the given element.

The order of evaluation of the receiver and index expressions is indeterminate.

7.6 Unary Operations

Unary prefix operations consist of sign operations, logical complement, increment, and decrement.

UnaryPrefixOperation:
+ Expression
- Expression
! Expression
++ Expression
-- Expression
Expression

The sign operations, + and -, require the given expression to be of numeric type (int, long, or double), and the type
of the sign expression is the same as its subexpression. The + operator has no effect on its operand, while the - operator
negates it.

The complement operator ! requires its operand expression to be of boolean type, and it results in a boolean. The
complement expression evaluates to the complement of the value produced by the operand.

17

The increment and decrement operators, ++ and --, require the given operand to be an l-value of numeric type. The
increment and decrement expressions increment and decrement, respectively, the object denoted by the operand. The
result is the new value of the operand object, and the type is the same as that of the operand.

The ID operator # requires the given operand to be of reference type, and it produces a value of type long. If the
operand is not a null reference, the resulting value represents the identity of the referenced object, and it is guaranteed
to be unique during the lifetime of the object. If the operand is a null reference, then the resulting value is zero, which
is guaranteed to be distinct from the identity of any valid object.

7.7 Binary Operations

Binary infix operations consist of arithmetic operations, logical operations, arithmetic comparisons, equality compar-
isons, assignment, and array push and pop operations.

BinaryOperation:
ArithmeticOperation
LogicalOperation
Comparison
EqualityTest
Assignment
ArrayOperation

The order of evaluation of the operands in a binary operation is indeterminate, except in logical operations.

Arithmetic Operations

Arithmetic operations include addition, subtraction, multiplication, division, and modulo.

ArithmeticOperation:
Expression + Expression
Expression - Expression
Expression * Expression
Expression / Expression
Expression % Expression

The operands to binary -, *, /, and %must be of numeric type. If the two operands have the same type, then the type of
the overall expression also has that type. Otherwise, it is the case that the type of one operand is implicitly convertible
to the type of the other, in which case the type of the overall expression is the latter.

The division operator /, when the result is of integer type (int or long), truncates the result. In other words, it rounds
the result toward zero. The result value is undefined if the second operand evaluates to zero.

The operands of the modulo operator %must have integer type (int or long). The result is the remainder from dividing
the first operand value by the second, preserving the sign of the first operand value. The result is undefined if the second
operand evaluates to zero.

The operands to the + operator must be of primitive type, but cannot be of null or void type. If the operands are both
of numeric type, the result type is as for the other arithmetic operators. If one operand is of boolean type, then the
other operand must be of string type. If one or both operands is of string type, then the operator performs string
concatenation, and the non-string operand, if there is one, is implicitly converted to a string using the appropriate
built-in conversion function. The result of string concatentation has type string.

18

Logical Operations

Logical operations consist of disjunction (||) and conjunction (&&).

LogicalOperation:
Expression || Expression
Expression && Expression

The operands must be of type boolean, and the result is also of type boolean.

The logical operations are short circuiting. The left-hand operand is evaluated first, and if it is true in the case of
disjunction or false in conjunction, the right-hand operand is not evaluated, and the result is the value of the left-
operand. Otherwise, the right-hand operand is evaluated, and its value is the result of the operation.

Comparisons

Comparisons consist of the operators <, <=, >, and >=.

Comparison:
Expression < Expression
Expression <= Expression
Expression > Expression
Expression >= Expression

The operands must both be of numeric type or both be of string type. The result is of type boolean. Numeric values
are compared numerically, while strings are compared lexicographically. Comparison operations are prohibited from
being chained together, both by associativity and by type rules.

Equality Tests

Equality comparisons include the == and != operators.

EqualityTest:
Expression == Expression
Expression != Expression

The operands must either have the same type, or the type of one operand must be implicitly convertible to the type of
the other. The result is of type boolean.

An equality comparison for a reference type compares the two objects by contents rather than by pointer equality. If
one of the two operands evaluates to a null reference, the result is true if the other operand also evaluates to a null
reference and false otherwise.

For user-defined types, objects are compared field by field, which are recursively compared. Two objects of a user-
defined type with no fields always compare equal. Arrays are compared by length and then by the individual elements.
Two empty arrays always compare equal.

The result of an equality comparison for a reference type is undefined if either of the operands contains a circular
reference.

19

Assignment

The assignment operation is as follows:

Assignment:
Expression = Expression

The type of the right-hand expression must match or be implicitly convertible to the type of the left-hand side. The
left-hand expression must produce an l-value. Assignment replaces the value of the object produced by the left-hand
operand with the value produced by the right-hand. The assignment operation as a whole has the same type as the
left-hand operand, and it produces the new value of the left-hand operand.

Array Operations

Arrays support push (<<) and pop (>>) operations.

ArrayOperation:
Expression << Expression
Expression >> Expression

A push operation appends the value produced by the right-hand expression to the end of the array produced by the
left-hand expression. The left-hand operand must be of array type, and the type of the right-hand operand must match
or be implicitly convertible to the element type of the left-hand array type. The result of the push operation has the
same type as the left-hand operand, and the value is the same array as that produced by the left-hand expression. It is
a runtime error if the left-hand operand evaluates to null.

A pop operation removes the last item from the left-hand array and assigns it to the object produced by the right-hand
operand, or discards it if the right-hand operand is the null literal. The left-hand expression must be of array type.
The right-hand operand must be either null or an l-value. In the latter case, the element type of the array must match
or be implicitly convertible to the type of the right-hand expression. The result of the pop operation has the same type
as the left-hand operand, and the value is the same array as that produced by the left-hand expression. It is a runtime
error if the left-hand operand evaluates to null or an empty array.

7.8 Associativity and Precedence

Operators in uC have the following associativity and precedence, ordered from lowest precedence to highest:

Precedence Class Operators Associativity
1 <<, >> left
2 = right
3 || left
4 && left
5 ==, != non-associative
6 <, <=, >, >= non-associative
7 infix +, - left
8 *, /, % left
9 prefix +, -, !, ++, --, # right
10 ., [] left

Non-associative operators of a single precedence class cannot be chained together within a single expression.

20

8 Memory Management

Implementations of uC are required to perform automatic memory management, i.e. garbage collection, for objects of
reference type.

8.1 Default Initialization

Objects of user-defined type constructed by the zero-argument default constructor are default initialized. In default
initialization, an object’s fields are set to default values. A field of primitive numeric type is set to zero, a field of
boolean type is set to false, and a field of string type is set to an empty string. Fields of reference type, including
array type, are set to null.

9 Revision History

• uC24 (December 2023)

– Rename floating-point type from float to double.

– Change syntax of type declarations to more closely match C-like languages.

– Change syntax of local-variable declarations to more closely match C-like languages.

• uC23 (December 2022)

– Change behavior of prefix increment/decrement and assignment so that they no longer produce l-values.

– Specify valid range of integer literals.

• uC22 (January 2022)

– Change syntax of allocations to unify user-defined and array allocations.

• uC18 (November 2018)

– Add cascading ifs.

– Add for loops.

– Add ID operator.

– Explicitly permit variables to have the same name as a type or function.

– Specify that equality comparisons are undefined in the presence of circular references.

• uC17 (November 2017)

– Add input functions (peekchar(), readchar(), readline()).

– Specify that the order of evaluation of the arguments of an allocation expression is indeterminate.

• uC16 (November 2016): original version

21

https://eecs390.github.io/uc-language/archive/uc23spec.pdf
https://eecs390.github.io/uc-language/archive/uc22spec.pdf
https://eecs390.github.io/uc-language/archive/uc18spec.pdf
https://eecs390.github.io/uc-language/archive/uc17spec.pdf
https://eecs390.github.io/uc-language/archive/uc16spec.pdf

	The uC24 Language Specification
	Lexical Structure
	Whitespace
	Comments
	Keywords
	Identifiers
	Literals
	Integer Literals
	Floating-Point Literals
	String Literals
	Boolean Literals
	Null Literal

	Operators
	Delimiters

	Program Structure
	Type Declarations
	Function Declarations

	Types
	Primitive Types
	User-Defined Types
	Arrays
	Type Compatibility

	Functions
	Built-in Functions
	User-Defined Functions

	Statements
	Blocks
	Variable Definitions
	Conditionals
	Loops
	Return Statements
	Expression Statements

	Expressions
	Simple Expressions
	Function Calls
	Allocation Expressions
	Field Access
	Array Indexing
	Unary Operations
	Binary Operations
	Arithmetic Operations
	Logical Operations
	Comparisons
	Equality Tests
	Assignment
	Array Operations

	Associativity and Precedence

	Memory Management
	Default Initialization

	Revision History

